Taking Maize Agronomy to Scale in Africa (TAMASA)
Contents

• TAMASA in brief
• Agronomy at scale framework
• Spatial ex-ante framework
• Using tools/applications to get data and feedback at scale
• Measuring yield: quick & dirty methods
• Predicting yield
• Nutrient management
• Some questions
TAMASA

Aims

• Use spatially representative farm panel data to understand spatial & temporal variability of management decisions & production outcomes

• Work with Service Providers to identify & co-develop applications that transform data & information to useable products

• Test rigorously uptake & outcome of decision support based recommendations & agronomic interventions

• Increase capacity in agronomy at scale
TAMASA sampling frame

Representativeness?

- Maize x market x pop AOI
- $n \times 10 \times 10$ km pixels /
- $n \times 1 \times 1$ km cells /
- n households or expts.

~750 HH panel survey
~ 400 NOT trials
What data does TAMASA have?

- Geo-referenced & ODK
- ~700 Nutrient Omission Trials
- ~ 200 Performance (NE validation) trials
- ~104 varieties grown in 72 experiments to predict phenology
- ~2600 plot & household panel survey [APS] (yield, soil, agronomy, plot & HH characteristics)
- ~ 4000 replicated crop cuts for yield
- ~ 4000 tissue samples (grain, ear leaf, stem)
Agronomy at scale?
What does taking Agronomy to Scale involve?

The *transformation* of the agronomic R&D and knowledge delivery landscape that results from the integration of (geo-spatially explicit) data collection at scale with the delivery of area or site specific agronomic advice by multiple service providers.

What would this transformed landscape look like?

Current
- Blanket recommendations
- Weak integration of available spatial data
- Limited reach and monitoring systems (*adoption, yields*)
- Limited tech. availability (*fertiliser blends*)

Potential
- Field/Area specific recommendations
- Real-time integration of available spatial data
- Reaching millions, and low-cost monitoring systems (*adoption, yields*)
- Technology availability

TAMASA activities should contribute to this movement.

How to move towards this vision?

How far to move? (appropriate scales)
Agronomy at Scale; towards a stepwise framework (1 of 2)

- **What is the information gap (solution)?** Need to understand:
 - The decision-maker/user
 - **Scale** of their operations/implementation
 - **Institutionalisation** – the capacity of a user to support or host products

- **What data is needed and available at that scale?**
 - Data sources
 - Data collection at scale (incentives for collection)?
 - Modelling to improve targeting/solution identification
 - Geo-spatial sampling frame
Agronomy at Scale; towards a stepwise framework (2 of 2)

- **What analytics, models & tools or products are needed?**
 Product design and analytics need to consider the user & their institutional system

- **What data needs to be collected?**
 Understand causes of variation and uncertainty
 Scalable, low-cost and quick (accurate, repeatable and scale appropriate)
 Data management (near real-time spatial & temporal data)

- **Feedback and learning for users and tool improvement**
 User experience of interface to improve tool
 Automated capture of how the tool is used (and decisions if possible)
 Capture outcome
Advice generation at different scales

Regional recommendation (blanket)
- Data required:
 - Rainfall
 - Soil texture
 - Current yields

NE - Area recommendation
- Data required:
 - Mgt. history
 - Rainfall
 - Soil texture
 - Current yields

NE - Field individual field recommendations

Users:
- Maize commodity groups
- Input providers (BG/Propcom/...)
- Extension (group approach)

Users:
- Extension
- Farmers
Spatial *Ex Ante* Analytical Framework

- Framework for evaluating potential impacts of agronomic decision support tools across space
- Start with Nutrient Expert

Spatially varying model inputs & outputs

- Soils & rainfall parameters
- Fertilizer prices
- Labor costs
- Output prices

Baseline: business as usual
Alternative: NE recommendation
Yield impacts from SSNM (net revenue optimizing)

Baseline:
100 kg/ha NPK 14:14:14

Π-optimizing

Yield improvements from NE over baseline

<table>
<thead>
<tr>
<th>variable</th>
<th>p5</th>
<th>p10</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>p90</th>
<th>p95</th>
<th>p99</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>yield</td>
<td>99</td>
<td>165</td>
<td>297</td>
<td>618</td>
<td>1,236</td>
<td>2,471</td>
<td>3,295</td>
<td>5,931</td>
<td>1,027</td>
</tr>
</tbody>
</table>
Applications for learning & monitoring
Applications

Maize Variety Selector
What to grow & where to get seed

Maize-Seed-Area
How much seed is needed & plant density advice
Crowd-sourcing by partners

Locations of ~1400 agro-dealers in Nigeria collected by 30 extension agents (500 in 3d) via ODK

General info
4 states: Kano, Kaduna, Katsina, Gombe
1 day Training
3 Days for Survey

Average Owner Age: ~43yrs (17 – 90 yrs range)

Varieties Carried: mode = 3, max = 7
Measuring & predicting yield
Measuring yield; quick & robust methods?

- Counting rows & columns
- Shelling, counting, weighing
- Stand & ear count (no. reproductive units/area)
- Plant height
- Ear digital photographs (wt/ear)
- Other suggestions?

<table>
<thead>
<tr>
<th>Plot</th>
<th>Visible Kernel No</th>
<th>Total Area</th>
<th>Mean Area</th>
<th>Mean Perim</th>
<th>Kernel Width</th>
<th>Kernel Length</th>
<th>Kernel Number</th>
<th>Total G</th>
<th>Weight</th>
<th>KUI</th>
<th>N Cobs</th>
<th>Cob length</th>
<th>Cob width</th>
<th>CUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1126</td>
<td>251.10</td>
<td>0.22</td>
<td>2.66</td>
<td>0.4</td>
<td>0.8</td>
<td>2537</td>
<td>1080.89</td>
<td></td>
<td>0.054</td>
<td>5</td>
<td>20.13</td>
<td>6.29</td>
<td>13.31</td>
</tr>
<tr>
<td>2</td>
<td>1069</td>
<td>290.39</td>
<td>0.27</td>
<td>2.93</td>
<td>0.44</td>
<td>0.89</td>
<td>2406</td>
<td>1025.97</td>
<td>0.060</td>
<td>6</td>
<td>19.55</td>
<td>6.04</td>
<td>26.66</td>
<td></td>
</tr>
</tbody>
</table>
Yield prediction: scaling

Spatial yield predictions from plot measurements (UAV, hand-held NDVI)
Nutrient management

Very low and low nutrient levels were considered as deficient*. In order to tackle soil nutrient deficiency for agricultural soils in the region, 11 types of blended fertilizers are recommended; their area coverage is: NPKSZnB (29%), NPKSFeZnB (28%), NPKSB (10%), NPSFeZn (8%), NPSB (7.4%) and NPSZnB (6.8%), etc.

* 0 represents non-deficient areas and 1 represents deficient areas for seven selected soil parameter (shown above).
Nutrient management applications: what is needed?

Very site specific, high information requirement: IPNI NE

Large area, spatial, lower information requirement: Spatial QUEFTS

Spatial QUEFTS plus minimum contextual information:
TEXTURE
CURRENT YIELD
INVESTMENT LEVEL
and?
Current nutrient management activities

- Partners in Nigeria (SG2000) and Ethiopia (MoANR/ATA) are making recommendations for farmers
- Extension workers were trained & provided with phones with NE mobile version
- Ethiopia – about 700 individual recommendations made. Paired plots have been established
- Nigeria – 20 extension agents trained to deliver 600 recommendations
- Assessment of: (i) the application/user-experience; (ii) whether farmers use the recommendation (NG) or the benefit (ET)
- Evaluating new blends in NG (& TZ) with OCP
What matters

• We are trying to nudge & change behaviour
• Understanding users & their use of information for decision-making is key. Risk & decision making gap
• Basic agronomy is as important as variety & nutrients, especially for low-investment farmers
• Decision-making driven by the level of investment & return on investment – not target yields
• Scaling, especially with inputs, is limited by:
 – logistics;
 – capacity of intermediaries to learn & deliver messages (1AF use 500 EA per 100k farmers & train every week);
 – scientists capacity to learn & keep it simple!
To end - some questions

- *Norm or assumption:* (dense) data in small areas represents AOI. How many trials/observations do we need to represent AOI?

- What spatial and contextual data is needed for nutrient recommendations at: (i) District level or area; (ii) community area; & (iii) Field or plot level?

- How would you design an application (or paper version) for the above?

- What (other) spatial data do we need for agronomy at scale?