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1. Introduction 

Choosing which variety (OPV or hybrid) to grow in a particular location is a very 
important decision for farmers as this determines to a very large extent the yield 
potential and the risk of crop failure.  Many extension agencies ask which 
varieties are suitable or best adapted for different locations, as the list of 
released or approved varieties in any one country can be large.  Furthermore, 
seed companies classify varieties for their suitability or adaptation in different 
ways, such as by altitude (e.g. suitable for lowland or <1000m) and duration (e.g. 
120-150 d variety; long duration).  While these maybe indicative, they are not 
very precise or predictive, and often choosing the right variety comes down to 
trial and error.   
 
The TAMASA project developed and piloted a decision-support tool called Maize 
Variety Selector (MVS) designed to  provide advice on which of the many 
available varieties to plant in a given location, and the characteristics of different 
varieties.  Based on experience in Ethiopia, Kenya, Nigeria and Tanzania with 
users and those breeding or releasing varieties, we developed a simpler 
workflow to generate the predictions needed for decision-support or advice.  
The steps are:  

(i) generate the data needed to parameterize or model the response of 
different varieties or genotypes to temperature, used to;  

(ii) generate model calibrations (parameterization) that enable times of 
flowering and maturity (harvest) of varieties to be predicted;  

(iii) download spatial or gridded temperature (weather) databases to 
make and map predictions;  

(iv) use tools that use the calibrated models to generate a database of 
spatial predictions of flowering and maturity at any location and any 
sowing date; and  

(v) map predictions spatially. 
 
This workflow will not result in an app per se, but the resulting spatial database 
may serve as the basis of an app or any other decision tool.  
 
The rest of this note is structured as follows. First, we describe why adaptation is 
important (section 2) and how the response to temperature can be modelled 
(section 3). Then we go through the five steps of the workflow (section 4). Lastly, 
we outline a decision-support system for providing advice on which varieties to 
plant where (section 5). 
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2. Why is choosing the right duration or maturity important? 

 
Sowing date and variety duration or type, are decisions farmers have some 
choice over to improve adaptation and to manage harvest dates.  Growing 
varieties of any crop species that are well adapted to a particular location is very 
important for productivity.  In the rainfed environments in which maize is 
predominantly grown in SSA, adaptation is largely determined by the timing of 
sowing, flowering and maturity in relation to rainfall and available soil moisture 
(Fig. 1). If a variety flowers and matures too late, yield will be reduced by water, 
and in some cases heat, stress. If a variety flowers and matures too early, then 
yield will be below the maximum or potential because the growing season was 
shorter than it need be and all the available water was not exploited.  The timing 
of flowering, the most sensitive stage of crop development, is also very 
important for minimizing pest and disease damage.  It is worth noting here that  
many traditional or landrace varieties of crops such as sorghum or pigeon pea 
are sensitive to photoperiod or day-length, a mechanism that ensures timely 
flowering by adjusting the length of the vegetative period (see Craufurd & Qi, 
2001 for an example).   
 
 

 
Figure 1.  An exemplar of a typical mono-modal growing season (Zaria in 
Nigeria) showing the rainfall pattern, preferred planting and harvesting 
dates,  and the duration of three hypothetical varieties. 
Based on Craufurd and Qi (2001).   
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3. How is (maize) duration (phenology) modelled? 

 
Phenology or development of maize from sowing through flowering (tasseling 
and/or silking) to maturity (black layer formation) is governed by a well-defined 
response to temperature, usually expressed as a rate or the reciprocal of 
duration (Figure 2).  The response is typically described in terms of the so-called 
cardinal temperatures, namely the base (Tmin or Tbase), optimum (Topt) or 
maximum (Tmax) temperature, and constant(s) describing the rate response.  So, 
at cool temperatures (~10°C in most tropical crops) rate of development is 
effectively zero.  As the temperature increases between the base and optimum, 
the rate of development increases and flowering, for example, occurs sooner at 
warmer than cooler temperatures, and earliest at the optimum (which effectively 
has a range of a few degrees).  The optimum temperature is typically around 30° 
to 34°C. At higher temperatures the rate of development is reduced and 
flowering is delayed.   
 
The response to temperature of individual varieties can be quantified from 
experimental data, either from multi-location trials or from designed calibration 
experiments, and models or curves fitted to the observed data relating rate of 
development to average (daily) temperature used to predict flowering and 
maturity.   
 

  
  

Figure 2.  The response of duration to flowering of maize variety VE201 to 
temperature.    
Note that the response is modeled as the rate of development (1/duration 
or the reciprocal of duration).  The figure on the left has a polynomial 
fitted and the one on the right has a linear regression superimposed 
between the minimum and optimum.  The minimum or base (Tmin), 
optimum (Topt) and maximum (Tmax) temperature are also shown.  
Source: Tonnang et al. (2018) 

 
In most cases, simple accumulated thermal time or degree-day (°C day) targets 
above a defined minimum or base temperature (typically around 10°C in maize) 
can be estimated by assuming a linear response to average temperature.  This is 
because in most growing seasons in most environments the optimum 
temperature will not be exceeded or not be exceeded for many days.  Therefore, 
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in Figure 2, if the regression line where rate = a + b * T (average daily 
temperature) is given by: 
 

Rate or 1/days to flowering = 0.013 + 0.00133T  
 
The minimum or base temperature is given by: 
 
  Tmin = a/b or 0.013/0.0013, and hence Tmin = 10°C.   
 
The accumulated thermal time or degree days to flowering is given by the 
reciprocal of b: 
 

1/b or 1/0.00133, and hence 750°C days.    
 
Thermal time simulations simply sum the difference between average daily 
temperature and Tmin:    
 
 Degree days (°Cd) =  T-Tmin 
 
until the target of 750°C days is achieved.  Thus, if the average daily temperature 
was 25°C, then each day 25 minus 10°C or 15°Cd would accumulate, and 
flowering would take 750/15 or 50 days.  
 
Where data includes high temperatures, the thermal time approach can be 
modified to account for the negative or delaying effect of high temperature, 
where if T>34°C, then: 
 
 Degree days (°Cd) = (Topt-Tmin) * (1-(T-Tmin)/(Tmax-Topt)). 
 
The same principle applies if rates rather than thermal times are modelled; each 
day a fraction of progress (from zero to one) to flowering or maturity occurs or 
accumulates until the target of one is reached. 
 

4. Workflow 

4.1. How can maize flowering and/or maturity data for calibration be 
collected and operationalized? 

 
Temperature-dependent models for maize (and other crops) can be calibrated 
from two sources of data, namely multi-locational trial data or calibration 
experiments.  It is recommended to start with calibration experiments if possible 
because these: (a) allow one to include all the varieties of interest (i.e. not just 
breeding lines or new releases) and (b) choose appropriate sites for observing 
varieties. 
 
4.1.1 Calibration experiments   
 
Calibration experiments or trials are designed based on the temperature 
response shown in Fig. 2. In principle, and practice, temperature response curves 
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or models can be fitted from relatively few observations of flowering or maturity 
as long as these data represent/cover as much variation or range in average 
temperature as possible.   A minimum of four experimental sites should be 
selected with low (cool) to warm (optimum), and hot (above optimum) average 
temperatures to observe flowering and/or maturity.  As long as the range in 
average temperature is large enough, as in Fig. 2 where observations were made 
at about 12°, 17°, 22° and 25°C – and ideally one warmer temperature, the 
response curve can be adequately fitted.  It is possible to do these calibration 
experiments in controlled environments (see Erskine et al. for an example), but 
usually there are too many varieties that need to be calibrated for this to be 
practical (and assuming such facilities are available of course). Some examples of 
calibration trials used in TAMASA and others are given below.    
 
A few key points for calibration trials: 
 

• Observing flowering and maturity, both which should be defined based on 
standard descriptors 
(https://cropgenebank.sgrp.cgiar.org/images/file/maize/Key_Access_De
scriptors_Maize.pdf), provides the most useful information.  However, just 
observing maturity would also suffice as it is crop duration (harvest date) 
that farmers are most interested in.   

• Calibration trials should be sited across an altitude gradient, which is an 
easy way to create the required variation in average temperature (see the 
examples below). 

• Including more than one sowing date will also create some variation in 
growing temperature (and provide extra insurance or replication).   

• Daily maximum and minimum temperature (or more frequent intervals 
with digital devices) must be measured at or very near each site.  These 
temperature data are essential for modelling or curve fitting.  Most 
research stations do have weather stations so are logical choices as sites.  

• The calibration trials can be very simple and replicated experiments are 
not needed.  A single replicate of a single 2 m row (for maize) is all that is 
needed to observe flowering and maturity.  Development, as opposed to 
growth, is less sensitive to growing conditions and it is usually only when 
stress is severe that the timing for flowering, for example, is affected.  So, 
a single replicate is good enough. In this way many varieties can be 
evaluated at one time without using much space.  

• In general, most research and breeding programs will record when 50% 
of the plants in a row have flowered or are mature.  This is a simple 
observation. 

 
Examples 
 

• Tonnang et al. (2020) used altitude to create different temperature 
environments for characterizing varieties in Ethiopia and Tanzania. 

 

Table 1.  Study sites in Tonnang (2020) 

Site, Country Altitude 
(m) 

Ave. min. 
(°C) 

Ave. max. 
(°C) 

Days to 
flowering 

https://cropgenebank.sgrp.cgiar.org/images/file/maize/Key_Access_Descriptors_Maize.pdf
https://cropgenebank.sgrp.cgiar.org/images/file/maize/Key_Access_Descriptors_Maize.pdf
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Dedessa, ET 1224 18.5 32.2 65 
Bako, ET 1640 14.1 27.2 80 
Holleta, ET 2351 8.8 22.4 112 
     
Miwaleni, TZ 1581 20.0 31.5 66 
Uyole, TZ 1769 12.7 25.4 82 
Igeri, TZ 2212 11.4 20.3 103 

 
• Craufurd et al. (1999) characterised sorghum for responses to 

temperature and photoperiod using an altitude gradient in Kenya.  In this 
study sorghum germplasm was grown at a range of sites in Kenya from 
sea level to >1600m to create variation in average temperature. At some 
sites daylength was also extended to simulate higher latitudes.   

• Erskine et al. (1990) characterised lentil germplasm for photoperiod and 
temperature responsiveness using four controlled environments.  In this 
study lentil germplasm was grown in four controlled environments using 
two temperatures and two photoperiods.   

 
 
4.1.2 Using data from multi-locational variety release trials.   
 
Dates of flowering and maturity are routinely recorded in breeder and variety 
release trials (NPTs or similar), and often these are on research stations where 
daily weather data are also recorded. Potentially these data can be used to model 
flowering or maturity, especially if trial sites capture a good range in average 
temperature, as outlined above. The data in Figure 2 is from CIMMYT multi-
locational breeder trials (Tonnang et al., 2018); see also Adnan et al. (2019) who 
compared parameterization and predictions performed using a calibration data 
set and data from breeder’s trials in Nigeria. The study of Adnan et al. (2019) in 
particular showed that models derived from a small subset (number) of trials in 
northern Nigeria was able to generate robust predictions similar to those from a 
larger, designed set of trials.  
 
The best strategy would be to plant all the available varieties (released and local, 
i.e. what is actually grown by farmers and therefore the varieties they want 
information on) in calibration trials to quickly generate the data needed for 
models and predictions.  Subsequently, as new varieties are released, the NPT 
data should be sufficient to provide the necessary calibration.   
 
 
 

4.2. Parameterizing curves/models of flowering and maturity 

 
Time to, or the date of, flowering and maturity can be modeled (i.e. Fig. 2, the 
equations describing the response to temperature parameterized) in a number 
of applications, including for example GENCALC of DSSAT (see Adnan et al. 
2019).  Scripts to fit curves can also be written in most programs, including R.  
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TAMASA developed an open source software in R, called PPMaP, described 
below.    
 
To run any model to optimize and parameterize the equations describing the 
curve(s) requires:  

a) the observed dates or times (days after sowing or emergence) for 
flowering or maturity;  

b) the average daily temperature for the season/ year or for the duration of 
the experiment.   

c) photoperiod or daylength: Note that in the case of maize all the varieties 
we have tested have been insensitive to photoperiod or daylength and 
hence only require temperature to make predictions.  Some varieties may 
respond to photoperiod and require a parameter for this as well.  

 
There is, unfortunately no standard equation used to model phenology.  A simple 
linear or thermal time response (described above) will suffice for most practical 
purposes (i.e. to identify which varieties are relatively early or late).  If the range 
of temperatures used to parameterize the model or curve was small, then 
assuming a constant Tmin (for example 8°C as in CERES/DSSAT), and if needed a 
constant Tmax (40°C), is justified.  
 
PPMaP 
Plant Phenology Prediction and Mapping (Tonnang et al., 2020) is an open-source 
software for modelling response to temperature (there are 82 models coded in the 
application) and mapping the predictions.  The software is written in R with an 
easy to use GUI interface.  The software uses observed phenology and temperature 
data to assess and fit models. The paper by Tonnang et al. (2018) describes the 
development of the software and an example from Kenya. The mapping 
component is described later. 
 

 

 

 
The code for PPMaP and a user manual can be found here   
https://github.com/Atoundem/PPMaP.  Basically, the user has to enter: (i) values 
of the rate of development (1/duration to flowering or maturity); and (ii) the 
average daily temperature over the same period from different experiments or 

https://github.com/Atoundem/PPMaP


8 

 

trials, and the software will fit and determine the best model.  The resultant model 
can be used for mapping in PPMaP itself or in the XLS tool, both described below. 
 
 
GENCALC 
The GENCALC program of the DSSAT (Version 4.6) can be used to calibrate the 
parameters or coefficients used by DSSAT and CERES models to predict phenology 
(see Adnan et al. 2019 for an example). Four parameters define the life cycle and 
are needed to simulate flowering and maturity (Boote et al., 2003): 

• P1 (o days):  Thermal time from seedling emergence to the end of juvenile 
phase (taken as panicle initiation) 

• P2 (o days): Delay in development for each hour that day-length is above 
12.5 hours 

• P5 (o days). Thermal time from silking to time of physiological maturity 
• PHINT (oC day tip-1): Thermal time between successive leaf tip appearance 

 
These model parameters are all basically thermal time or degree-day values and 
hence easy to use. Ideally panicle initiation, silking, physiological maturity and 
leaf-tip appearance would be observed, though GENCALC will optimize some 
parameters based on initial values.  Most maize varieties are not affected by 
photoperiod and P2 can be set to a small value (Adnan et al. used P2=0.5 for maize 
in northern Nigeria, for example).  Some typical values from that study are given 
in the table below.  
 

Table 2.  Parameters to predict flowering and maturity date in selected maize 
varieties from Nigeria (Adnan et al., 2019) 

Variety P1 (°C days)   P5 (°C days)   PHINT (°C day tip-1) 

Ife hybrid 6 224   521   36.9 

Sammaz 42 230   683   45.5 

OBA SUPER I 293   768   45.0 

SC 8325 290   782   41.2 

Sammaz 32 282   601   45.0 
 
 
 

4.3. Downloading spatial temperature (weather) databases 

 
There are a number of sources of daily, gridded weather data suitable for making 
spatial predictions.  Schauberger et al.  (2020) provide a current list of all the 
available databases.  Daily data is preferred to monthly data to capture any 
seasonal variation in temperature.   

 
For the XLS-based macro described below (section 4.4: MSPP) we used 
AgMERRA data (https://data.giss.nasa.gov/impacts/agmipcf/), which is 25 km  
(~0.25°) resolution, gridded dataset used by the crop modeling community. 
AgMERRA has daily weather data from 1980 to 2010 and is free to download in a 
range of formats, including CSV.   A 25 km2 resolution pixel is rather coarse for 

https://data.giss.nasa.gov/impacts/agmipcf/
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areas with a large variation in topography, but the prediction is primarily to 
allow a comparison of varieties rather than make an exact prediction.   
 

 
Figure 3. AgMERRA grids for Tanzania (~480 grids) overlaid on the cropland area 
(~180 grids) 
 
The R file agMERRAnc4ToCSV (https://github.com/KevinOluoch/MSPP) 
provides the code needed to use the AgMERRA netCDF format files downloaded 
from the site and convert them into CSV files that can be used in other 
applications.   
 
Create data for the MSPP 

The temperature data used in MSPP is available on the agMERRA website 
(https://data.giss.nasa.gov/impacts/agmipcf/) in the netCDF format. The spatial 
extent of the data is the whole world. Each NetCDF file covers a wide range of 
climate variables but we are only interested in either the minimum or maximum 
daily temperature, or the average daily temperature over the period between 
1980 and 2010. The first step is thus to download these data for all the years (or 
a required period) and have the data in (three folders): minimum, maximum and 
average temperature. The file paths to these folders are then used to get the file 
paths of all the NetCDF files in them: 

library(devtools) 

## Loading required package: usethis 

# Load "agMERRAnc4ToCSV" package 
path2package <- "../Rpackage/agMERRAnc4ToCSV" 
devtools::load_all(path2package) 

## Loading agMERRAnc4ToCSV 

# Place inputs in the data folder 
netCDF_TminFolder <- "../data/netCDF/AgMERRA_tmin" 
netCDF_TmaxFolder <- "../data/netCDF/AgMERRA_tmax" 
netCDF_TavgFolder <- "../data/netCDF/AgMERRA_tavg" 

https://github.com/KevinOluoch/MSPP
https://data.giss.nasa.gov/impacts/agmipcf/
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# Get netCDf filepaths 
Tmin.nc4files <- agMERRAnc4ToCSV::nc4fullpaths(netCDF_TminFolder) 
Tmax.nc4files <- agMERRAnc4ToCSV::nc4fullpaths(netCDF_TmaxFolder) 
Tavg.nc4files <- agMERRAnc4ToCSV::nc4fullpaths(netCDF_TavgFolder) 

 

MSPP uses point data in its computation. To use it in a given set of locations or 
geographical area, you need to extract the data. You need to have the location 
data as a “SpatialPointDataFrame” object or in a CSV file, which can be converted 
to a “SpatialPointDataFrame” using the “wgsSpatialPointsDataFrame” function. 
This function assumes that the coordinates are in WGS84 if no coordinate system 
is provided: 

# Provide a path to the locations CSV 
inputCSV <- "../data/tzaLocations.csv" 
 
# Create a SpatialPointsDataFrame Object from the CSV 
shpfle <- agMERRAnc4ToCSV::wgsSpatialPointsDataFrame(inputCSV, 
                                           LongitudeColumn = "Lon",  
                                           LatitudeColumn = "Lat") 

 

Extracting data from the NetCDF files and providing the output in a data frame 
involves a few steps which are all covered in the “xtrctagMERRAnc4” function 
from “agMERRAnc4ToCSV” package. The “xtrctagMERRAnc4” function requires a 
vector of file paths to NetCDF files, a SpatialPointsDataFrame of locations to be 
extracted and the names of two columns in the SpatialPointsDataFrame with 
geographical names. It then returns a data frame of extracted values, which is 
organized in the format required in the MSPP tool. 

The data should be saved in CSV files that can either be pasted in the MSPP tool 
or loaded via links to Excel sheets. The steps for connecting an Excel sheet to an 
CSV file is provided below: 

# Write to CSV 
dir.create("temperatureCSVs", showWarnings = FALSE) 
write.csv(Tmin, "temperatureCSVs/Tmin.csv", row.names = FALSE, col.n
ames = FALSE) 
write.csv(Tmax, "temperatureCSVs/Tmax.csv", row.names = FALSE, col.n
ames = FALSE) 
write.csv(Tavg, "temperatureCSVs/Tavg.csv", row.names = FALSE, col.n
ames = FALSE) 

 

 

4.4. Tools to generate spatial predictions of maize phenology  

 
To recap, the duration from sowing to flowering and/or maturity in maize is 
determined by average daily temperature between minimum and optimum 
cardinal values.   Gridded (i.e. geo-referenced data linked to a pixel or cell of a 
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certain size) daily temperature data for individual years or long-term averages 
are available across the globe from several sources at resolutions of 50 km (0.5 
deg) to 10 km (0.1 deg).  Therefore, given a gridded (spatial) temperature 
database, and model equations defining the response to temperature, the 
duration from sowing to flowering and maturity can be predicted for any given 
sowing date at each grid point or pixel.   
 
Below we give two examples for generating predictions, an XLS-based tool MSPP 
(see below and 4.5.1), and an open-source R/Java software called PPMaP 
(Tonnang et al., 2020; see 4.5.2). 
 
MSPP XLS-tool 

The MSPP tool is a relatively simple piece of software that runs in Excel to 
generate a database of predictions (available here: 
https://github.com/KevinOluoch/MSPP).  MSPP is written in Visual Basic (VBA) 
programming language that is accessible in Excel via the developer tab. This 
software should therefore be accessible and useable to most people familiar with 
Excel and does not require any other operating languages such as R or Python.   

There are five steps to generate the predictions using this tool once the user has 
the model parameters (Step II) and the AgMERRA database (Step III): 

1. Optional. The AgMERRA database will have all the grid cells in a country, 
for example 480 or so for Tanzania.  However, many of these cells will not 
contain crops and are therefore not needed for the predictions.   
Removing these as a first step can reduce the number of simulations and 
the size of the final database of predictions, which is helpful. A cropland 
mask (e.g. global croplands: 
https://croplands.org/app/map?lat=0.17578&lng=0&zoom=2) can be 
used to remove all the pixels or grid cells where crops were not grown;   

2. The AgMERRA database is first imported in to the MSPP tool; see Section 
III above  

3. The user then chooses the appropriate model or equation and enters the 
parameters from the calibration. Users can simulate sowing to flowering 
or maturity, or if flowering and maturity have been calibrated separately, 
simulate sowing to flowering, and flowering to maturity. 

4. The user then chooses sowing date(s) (1, 10 or 20th day of the month or 
dekads), month(s) and year(s) for the simulations. Three sowing dates 
per month is adequate for comparing varieties across sowing dates and 
providing advisories. 

5. The tool predicts flowering and/or maturity in every pixel for each 
selected sowing date, month and year and outputs these as an XLS file.  If 
multiple years were used, then the tool also calculated the average plus 
the standard deviation and generates an XLS output file. These files can be 
used in other applications. 

 

The MSPP tool can be found here (https://github.com/KevinOluoch/MSPP) and 
instructions are given on each tab/screen when the file is opened. 
 

https://github.com/KevinOluoch/MSPP
https://github.com/KevinOluoch/MSPP
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4.5. Mapping spatial predictions 

Once the predictions are made, they are saved into an Excel workbook 
(database) that allows any predicted value of flowering and/or maturity to be 
extracted for a given sowing date.  These values can also be mapped. 

The MSPP tool’s output is an Excel workbook. The workbook has two or three 
worksheets, depending on whether flowering and/or maturity was predicted. 
There is a summary sheet, which gives the mean and standard deviation of the 
number the predictions over the 30 years (or selected period) that MSPP was 
run at.  The other sheets give the predictions for each sowing date in all selected 
months and all selected years. The summary data are the most useful ones to use 
for mapping predictions or as an app database. 

 

4.5.1 Mapping predictions from MSPP 

Interpolating the Mean values from the summary sheet can be done using the 
“interpolateMeanDays” function (agMERRAnc4ToCSV library). The function 
takes the coordinates of the locations and the mean values as input parameters 
and returns a raster of the interpolated values over an area covering the extent 
of the input coordinates: 

data.df <- xlsx::read.xlsx("../data/Briere_3_1980_2009_02_01.xlsx", 
1) 
 
Flowering.raster <- agMERRAnc4ToCSV::interpolateMeanDays(Lon = data.
df$Lon,  
                                            Lat = data.df$Lat,  
                                            meandays = data.df$Flowe
ring.Mean) 

## [inverse distance weighted interpolation] 

Maturity.raster <- agMERRAnc4ToCSV::interpolateMeanDays(Lon = data.d
f$Lon,  
                                            Lat = data.df$Lat,  
                                            meandays = data.df$Matur
ity.Mean) 

## [inverse distance weighted interpolation] 

 
plot(Flowering.raster,   
     main="Sowing to Flowering Mean Days", 
     xlab="Longitude", 
     ylab="Latitude")  

 

 
4.5.2 Predictions and mapping in PPMaP 
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The PPMaP software (https://github.com/Atoundem/PPMaP)  will also map the 
phenology predictions if a suitable database is loaded into PPMaP.  The User 
Manual explains how to do this. 
 
 

 

 

Figure 4.  Maps generated by interpolateMeanDays R code (left) and PPMaP (right). 
 
 
 

5. Suggested application or decision-support system for advisories on 
variety choice  

 
The workflow or logic (Fig 5) below is an example of a simple app or decision-
support system based on the outputs of the MSPP tool.  This could be 
implemented through ODK (Open Data Kit) or of course made into an Android 
app.  This is based on TAMASA’s experience with an application called MVS that 
was tested with users in Nigeria, Ethiopia and Tanzania. 
 
The opening screen will describe what MVS does and how it is used.  The 
primary purpose of MVS is to help identify which varieties ‘fit’ the cropping 
calendar of the beneficiary, usually a farmer. The tool can be used by service 
providers, who are in our experience likely to be the primary users, or by 
individual farmers.   
 
The first screen will allow the user to identify the location where they want to 
plant maize.   This will be through nested region/zone-state-district to lowest 
administrative unit.  This is simpler to implement (at least in ODK) than clicking 
on a map.  We also observed that with a map function the user spent a lot of time 
looking for their village name, which is often not marked or the name not easily 
visible.  A nested site schema also makes it easy to link the relevant pixel with 
the predictions. 
 

https://github.com/Atoundem/PPMaP
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Figure 5.  Logic of MVS with user inputs and app outputs 
 
The second screen will ask users to input a preferred sowing or planting date 
and a preferred harvest date.  This is predicated on the assumption that farmers 
or other users know their own growing or cropping season well and can give 
realistic start and end dates. Farmers usually know when they want to harvest 
and, in many cases, they want to spread the date of harvest if possible. This logic 
also keeps the application fairly simple in that it only requires two inputs from 
farmers; preferred sowing date and preferred harvest date.  Figure 1, at the start 
of this document, explains the logic of this decision. 
 
The application would then extract the flowering and/or maturity date for every 
variety at the given sowing date in the relevant pixel, and display only the 
varieties that mature within, say, ±7 d of the user preferred harvest date.  This 
criterion can be varied and/or determined for each country, and of course all 
predictions could be shown if desired.    
 
Users can also click on the varieties listed and see the available information 
(characteristics) on those varieties.  We have observed in a number of 
applications that farmers valued information about varieties.  There will also be 
an option to try another sowing date or quit. 
 
Information on variety characteristics and suitability needs to be linked to 
information on where seed can be purchased to improve the utility of MVS.  A 
good additional option would be to include an agro-dealer database with an 
option to show the nearest agro-dealer and give a phone number. In Nigeria 
TAMASA did map agro-dealers and seed dealers and make a static database.  
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An example of a Decision-Support System for maize varieties in Mbeya 
District, Southern Zone, Tanzania 
 
 
Mbeya District, comprising 10 sub-Districts centered around the city of Mbeya 
(Fig. 6), is a major maize growing area in the Southern Highlands of Tanzania.  
This District includes highland and lower altitude (valley) areas with different 
climates and ecologies that could influence the choice of variety for different 
locations.  
 

 
Figure 6.  Mbeya District and sub-Districts.  
 
More than 30 widely grown maize varieties and hybrids were grown in 
experiments in Tanzania and their duration from sowing to maturity modelled. 
These models allow for the time of date of maturity to be predicted for any given 
sowing date at any given location.  We can answer a number of practical 
questions from these data. 
 
How does time to maturity vary with sowing date? 
 
The duration from sowing to maturity in maize is affected by temperature, which 
can vary during the season (and of course between sites, especially if the altitude 
is different).  In Chunya late sowings do take about 15 days longer to mature 
than early sowings, due to cooler temperatures in the spring (Fig. 7).  However, 
early sowings are not much affected.  
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Figure 7. Predicted response of a medium variety to sowing date at Chunya sub-
District 
 
 
If I plant on 01 December in Chunya sub-District, when will different varieties be 
ready for harvest? 
 
Taking a typical sowing date in the region of 01 December, if we compare 
varieties at Kiwanja in Chunga sub-District as an example, we can see that most 
varieties matured between 100 and 120 days after sowing, i.e. between 01 and 
20 March (Fig. 8). One variety was very early, maturing in less than 90 days (~15 
February) and a few varieties were very late, maturing in more than 130 days 
(~01 April).  Overall, these varieties offer growers substantial variation in 
maturity date to choose from.  An app or paper-based decision-support tool  
would identify those varieties predicted to mature in a period closest to that 
desired by the grower.  
 

 

 

Figure 8.  Predicted variation in time from sowing to maturity among varieties in  
Chunya, Tanzania 
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If I want to advise growers in Mbeya District on which variety to grow, how can I 
do this? 
 
The two maps below (Fig. 9) show the spatial patterns for maturity date of an 
early and medium variety across Mbeya District for a 01 December sowing date. 
We can see from the darker colours where the highland and cooler areas are and 
that these result in more than 20 days difference in maturity within a variety. We 
can also see that in most sub-Districts there is 10 to 15 days variation in maturity 
date within an individual variety.  While variety maturity could be mapped by 
District, as is done in Fig. 6 for the medium variety, it is better to delineate zones 
within sub-Districts for recommendations.  
 

  
 

Figure 9.  Predicted maturity dates for maize varieties V31 (early maturity) and V22 
(medium maturity) in Mbeya District for a 01 December planting date 
 
At the level of a District extension office, or for the AoI of an NGO, maps such as 
those in Fig. 9 could be generated to show farmers the relative differences in 
variety maturity for different sowing dates to aid decision-making.  Tables or 
databases by town or community could also be produced with the same 
information.  As these are based on long-term weather data, they are essentially 
a reference resource and do not need re-generating each year. 
 
Code and software resources 
 
MSPP and AgMERRA code : https://github.com/KevinOluoch/MSPP 
PPMaP: https://github.com/Atoundem/PPMaP)   
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